A monotone geometric mean for a class of Toeplitz matrices
نویسندگان
چکیده
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملMonotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices
This paper studies off-diagonal decay in symmetric Toeplitz matrices. It is shown that if the generating sequence of the matrix is monotone, positive and convex then the monotonicity and positivity are maintained through triangular decomposition. The work is motivated by recent results on explicit bounds for inverses of triangular matrices. © 2005 Elsevier Inc. All rights reserved. AMS classifi...
متن کاملThe Kähler Mean of Block-Toeplitz Matrices with Toeplitz Structured Blocks
When computing an average of positive definite (PD) matrices, the preservation of additional matrix structure is desirable for interpretations in applications. An interesting and widely present structure is that of PD Toeplitz matrices, which we endow with a geometry originating in signal processing theory. As an averaging operation, we consider the barycenter, or minimizer of the sum of square...
متن کاملToeplitz and Circulant Matrices: A review Toeplitz and Circulant Matrices: A review
t 0 t −1 t −2 · · · t −(n−1) t 1 t 0 t −1 t 2 t 1 t 0. .. t n−1 · · · t 0 The fundamental theorems on the asymptotic behavior of eigenval-ues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2016.08.032